ค้นหา
  
Search Engine Optimization Services (SEO)

การเรียงสับเปลี่ยน และ การจัดหมู่

ในหลายสาขาของคณิตศาสตร์ การเรียงสับเปลี่ยน (อังกฤษ: permutation) อาจมีความหมายที่แตกต่างกันดังที่จะได้กล่าวต่อไป ซึ่งทั้งหมดนั้นเกี่ยวกับการจับคู่สมาชิกต่างๆ ของเซต ไปยังสมาชิกตัวอื่นในเซตเดียวกัน ตัวอย่างเช่น การเปลี่ยนลำดับสมาชิกของเซต

การเรียงสับเปลี่ยน เป็นการทำให้เข้าใจว่าหมายถึง "ลำดับ" ที่ประกอบด้วยสมาชิกจากเซตจำกัด และแต่ละตัวมีเพียงตัวเดียว แนวคิดของลำดับนั้นแตกต่างจากแนวคิดของเซต นั่นคือสมาชิกของลำดับจะปรากฏโดยลำดับอย่างหนึ่ง ซึ่งมีสมาชิกตัวที่หนึ่ง ตัวที่สอง ฯลฯ ต่างกับสมาชิกของเซตซึ่งไม่มีการเรียงลำดับ เช่น {1, 2, 3} กับ {3, 2, 1} ก็ถือว่าเป็นเซตเดียวกัน

อย่างไรก็ตาม ความหมายดั้งเดิมของการเรียงสับเปลี่ยนที่ใช้ในคณิตศาสตร์เชิงการจัดก็ยังคงมีอยู่ นั่นคือการเรียงสับเปลี่ยนหมายถึงลำดับเช่นนั้น (ดังที่ได้กล่าวแล้ว) โดยที่สมาชิกแต่ละตัวปรากฏอย่างมากแค่หนึ่งครั้ง แต่ไม่ใช่สมาชิกทุกตัวในเซตที่นำมาใช้

สำหรับอีกแนวความคิดหนึ่งที่เกี่ยวข้องในการเรียงลำดับของสมาชิกที่ถูกเลือก ซึ่งการเรียงลำดับไม่มีความสำคัญ ดูเพิ่มที่ การจัดหมู่ (combination)

สมาชิกของการเรียงสับเปลี่ยนไม่จำเป็นต้องจัดเรียงอยู่ในอันดับเชิงเส้น หรือแม้กระทั่งไม่จำเป็นต้องเรียงลำดับก็ได้ ภายใต้การนิยามที่ปรับแต่งแล้วนี้ การเรียงสลับเปลี่ยนจึงเป็นฟังก์ชันหนึ่งต่อหนึ่งทั่วถึง (bijection) จากเซตจำกัดหนึ่งไปยังเซตตัวเอง กรณีเช่นนี้สามารถใช้ได้กับการนิยามกรุปของการเรียงสับเปลี่ยน ดูเพิ่มที่ กรุปเรียงสับเปลี่ยน (permutation group)

ในส่วนนี้จะกล่าวถึงเฉพาะตามแนวคิดดั้งเดิมในคณิตศาสตร์เชิงการจัดเท่านั้น นั่นคือการเรียงสับเปลี่ยนคือลำดับที่มีการจัดอันดับ ของสมาชิกที่ถูกเลือกจากเซตจำกัดโดยไม่มีการเลือกซ้ำ และไม่สำคัญว่าจะต้องใช้สมาชิกทุกตัว ตัวอย่างเช่น สมมติกำหนดให้เซตของตัวอักษร {C, E, G, I, N, R} การเรียงสับเปลี่ยนบางส่วนของเซตนี้เช่น ICE, RING, RICE, NICER, REIGN และ CRINGE เป็นต้น หรือแม้แต่ RNCGI ซึ่งเป็นลำดับที่ไม่จำเป็นต้องมีคำที่มีความหมาย ส่วนคำว่า ENGINE ไม่เป็นการเรียงสับเปลี่ยนเพราะว่ามีสมาชิก E กับ N ซ้ำสองครั้ง

ถ้าให้ n แทนขนาดของเซต นั่นคือจำนวนสมาชิกที่มีในเซต การเรียงสับเปลี่ยนที่เป็นไปได้ที่ "ใช้สมาชิกทั้งหมดทุกตัว" ในครั้งแรกจะมีตัวเลือกทั้งหมด n ตัวสำหรับสมาชิกของลำดับตัวที่หนึ่ง และเมื่อสมาชิกตัวที่หนึ่งถูกเลือกไปแล้ว จะเหลือสมาชิก n ? 1 ตัวสำหรับลำดับตัวที่สอง เมื่อสมาชิกถูกเลือกไปแล้วสองตัว การเรียงสับเปลี่ยนจึงสามารถเป็นไปได้

สมาชิกตัวถัดไปของลำดับก็เลือกได้ n ? 2 วิธี, n ? 3 วิธี ฯลฯ อย่างนี้เรื่อยไปจนเหลือสมาชิกตัวสุดท้ายในเซตเพียงตัวเดียว การเรียงสับเปลี่ยนที่ใช้สมาชิกทั้งหมดจึงเป็นไปได้

"!" คือแฟกทอเรียล ในกรณีที่การเรียงสับเปลี่ยนไม่ได้ใช้สมาชิกทุกตัวในเซต กำหนดให้ r เป็นจำนวนสมาชิกที่ถูกเลือกจากเซต (0 ? r ? n) จำนวนตัวเลือกในการเรียงสับเปลี่ยนที่เป็นไปได้ จึงหยุดลงเมื่อได้สมาชิกครบ r ตัว ดังนี้

จำนวนที่หายไปคือ (n ? r) ? (n ? r ? 1) ? … ? 2 ? 1 = (n ? r)! นั่นคือเราต้องเอาจำนวนนี้ไปหารออกจาก n! จึงจะได้จำนวนวิธีที่เหลือ สรุปได้เป็น

ดังที่ได้อธิบายไว้แล้วในส่วนต้น การเรียงสับเปลี่ยนของเซตในทฤษฎีกรุป เป็นการจับคู่ (หรือฟังก์ชัน) แบบหนึ่งต่อหนึ่งทั่วถึง (bijection) จากเซตจำกัดไปบนเซตตัวเอง ดังนั้นการสร้างการเรียงสับเปลี่ยนของจำนวน 1 ถึง 10 จะแปลความหมายได้ว่าเป็นการจับคู่ของเซต {1, …, 10} ไปยังเซตเดิม เป็นต้น

การเรียงสับเปลี่ยนของเซตสามารถพิจารณาได้ว่าเป็นฟิลเทรชัน (filtration คือสายโซ่ของเซตย่อย) ตัวอย่างเช่นลำดับ {0, 1, 2} จะสมนัยกับฟิลเทรชัน {0} ? {0, 1} ? {0, 1, 2}


 

 

รับจำนำรถยนต์ รับจำนำรถจอด

เบอร์ลินตะวันออก ประเทศเยอรมนีตะวันออก ปฏิทินฮิบรู เจ้า โย่วถิง ดาบมังกรหยก สตรอเบอร์รี ไทยพาณิชย์ เคน ธีรเดช อุรัสยา เสปอร์บันด์ พรุ่งนี้ฉันจะรักคุณ ตะวันทอแสง รัก 7 ปี ดี 7 หน มอร์ มิวสิค วงทู อนึ่ง คิดถึงพอสังเขป รุ่น 2 เธอกับฉัน เป๊ปซี่ น้ำอัดลม แยม ผ้าอ้อม ชัชชัย สุขขาวดี ประชากรศาสตร์สิงคโปร์ โนโลโก้ นายแบบ จารุจินต์ นภีตะภัฏ ยัน ฟัน เดอร์ไฮเดิน พระเจ้าอาฟงซูที่ 6 แห่งโปรตุเกส บังทันบอยส์ เฟย์ ฟาง แก้ว ธนันต์ธรญ์ นีระสิงห์ เอ็มมี รอสซัม หยาง มี่ ศรัณยู วินัยพานิช เจนนิเฟอร์ ฮัดสัน เค็นอิชิ ซุซุมุระ พอล วอล์กเกอร์ แอนดรูว์ บิ๊กส์ ฮันส์ ซิมเมอร์ แบร์รี ไวต์ สตาญิสวัฟ แลม เดสมอนด์ เลเวลีน หลุยส์ที่ 4 แกรนด์ดยุคแห่งเฮสส์และไรน์ กีโยม เลอ ฌ็องตี ลอเรนโซที่ 2 เดอ เมดิชิ มาตราริกเตอร์ วงจรรวม แจ็ก คิลบี ซิมโฟนีหมายเลข 8 (มาห์เลอร์) เรอัลเบติส เฮนรี ฮัดสัน แคว้นอารากอง ตุ๊กกี้ ชิงร้อยชิงล้าน กันต์ กันตถาวร เอก ฮิมสกุล ปัญญา นิรันดร์กุล แฟนพันธุ์แท้ 2014 แฟนพันธุ์แท้ 2013 แฟนพันธุ์แท้ 2012 แฟนพันธุ์แท้ 2008 แฟนพันธุ์แท้ 2007 แฟนพันธุ์แท้ 2006 แฟนพันธุ์แท้ 2005 แฟนพันธุ์แท้ 2004 แฟนพันธุ์แท้ 2003 แฟนพันธุ์แท้ 2002 แฟนพันธุ์แท้ 2001 แฟนพันธุ์แท้ 2000 บัวชมพู ฟอร์ด ซาซ่า เดอะแบนด์ไทยแลนด์ แฟนพันธุ์แท้ปี 2015 แฟนพันธุ์แท้ปี 2014 แฟนพันธุ์แท้ปี 2013 แฟนพันธุ์แท้ปี 2012 ไทยแลนด์ก็อตทาเลนต์ พรสวรรค์ บันดาลชีวิต บุปผาราตรี เฟส 2 โมเดิร์นไนน์ ทีวี บุปผาราตรี ไฟว์ไลฟ์ แฟนพันธุ์แท้ รางวัลนาฏราช นักจัดรายการวิทยุ สมเด็จพระสันตะปาปาปิอุสที่ 7 แบร์นาร์แห่งแกลร์โว กาอึน จิรายุทธ ผโลประการ อัลบาโร เนเกรโด ปกรณ์ ฉัตรบริรักษ์ แอนดรูว์ การ์ฟิลด์ เอมี่ อดัมส์ ทรงยศ สุขมากอนันต์ ดอน คิง สมเด็จพระวันรัต (จ่าย ปุณฺณทตฺโต) สาธารณรัฐเอสโตเนีย สาธารณรัฐอาหรับซีเรีย เน็ตไอดอล เอะโระเก คอสเพลย์ เอวีไอดอล ช็อคโกบอล มุกะอิ

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
จำนำรถราชบุรี รถยนต์ เงินด่วน รับจำนำรถยนต์ จำนำรถยนต์ จำนำรถ 23301